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OVERVIEW: The U.S. Army Corps of Engineers (USACE) is engaged in ecosystem restoration 
projects that are often characterized by varying degrees of risk and uncertainty. Though current 
policy requires that these issues be addressed,1 they are often given insufficient attention. Failure to 
quantify risk and uncertainty can result in overly conservative or misinformed restoration 
management policies, excess project costs, and failure to achieve project goals. The purpose of this 
technical note is to demonstrate — using an illustrative case study – how risk and uncertainty tools 
and techniques can be applied to ecosystem restoration projects. A global sensitivity and 
uncertainty analysis approach is proposed for identifying the most important factors to consider in 
a restoration project. In addition, the magnitude of the restoration needed to achieve a positive 
outcome for the target ecosystem is quantified. This case study is provided as a complement to 
Application of Risk Management Concepts and Methods for Ecosystem Restoration: Principles 
and Best Practice (Suedel et al. 2012). That technical note reviews current USACE risk and 
uncertainty management in ecosystem restoration projects, provides an overview of the relevant 
risk management concepts, and discusses the applicability of these concepts and tools to restoration 
projects. This technical note presents a case study that addresses the sensitivity of restoration 
outputs to uncertainty in key drivers of environmental processes. In particular, the Snowy Plover 
— a resident shorebird of Florida — and its risk of decline and extinction due to potential sea-level 
rise (SLR) is assessed. Finally, the best management outcomes are evaluated for the Snowy Plover 
in light of the sensitivity and uncertainty analysis.  

CASE STUDY: THE EFFECTS OF SEA LEVEL RISE ON THE SNOWY PLOVER 

Background. Uncertainty in environmental processes — specifically, the effects of uncertain 
drivers (having values that are only approximately known) — on restoration outcomes is widely 
acknowledged but seldom analyzed or properly accounted for in project planning (Wheaton et al. 
2008). In environmental management and restoration, ignoring uncertainty — or assuming it is 
insignificant — can result in larger, more frequent problems (Holling 1978; Wheaton et al. 
2008). Moreover, in many restoration projects, only one outcome is considered, when, in fact, 
uncertainty may lead to multiple possible outcomes in the target ecosystem. Embracing 
                                                      
1 ER 1105‐2‐100 stipulates that “Planners shall identify areas of risk and uncertainty in their analysis and describe 
them clearly, so that decisions can be made with knowledge of the degree of reliability of the estimated benefits 
and costs and of the effectiveness of alternative plans.” 
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uncertainty within restoration planning and design, on the other hand, allows decision makers to 
evaluate multiple scenarios and to draw inferences as to likely outcomes or consequences, 
thereby increasing the chances of project success (Johnson and Brown 2001). Wheaton et al. 
(2008) argue that embracing uncertainty can lead to significant benefits, such as an exploration 
of potential options, a clear communication of uncertainties, and a more transparent decision-
making process. A better understood and quantified risk and uncertainty analysis also has the 
potential to become a major factor in ecosystem restoration project ranking. 

One source of uncertainty in restoration planning is the future effect of climate change. For 
example, potential changes in coastal habitats caused by climate change may cause a population 
decline of shoreline-dependent species. In particular, SLR associated with  climate change can 
drastically affect wetlands and beaches, which are essential shorebird foraging and nesting areas. 
Habitat models are widely used to predict how climate change and other factors may affect 
future habitat distributions. Uncertainties of the parameters that represent both the variability of 
the environmental processes and the ignorance that we have of them may result in very different 
scenarios for the ecosystem. Here the case of the Snowy Plover (Charadrius alexandrinus 
nivosus), a resident shorebird of the Florida Gulf Coast, is presented.  

Research involving the Snowy Plover is part of a long-term project funded by the Strategic 
Environmental Research and Development Program (SERDP) (Linkov et al. 2010; Aiello-
Lammens et al. 2011; Convertino et al. 2011a-c). In Florida, the Snowy Plover is a state-
threatened shorebird geographically distributed along the northern and western white sandy 
beaches of the Gulf Coast. The estuarine and ocean beaches of the Florida Gulf Coast contain 
quartzite alkaline minerals essential to Snowy Plover habitat. The lack of this mineralogical 
feature along the Atlantic coast of Florida constitutes one of the major constraints for Snowy 
Plover habitat along the Atlantic coastline. Plovers are especially vulnerable to potential SLR 
impacts as they breed primarily on open sandy beaches and are less adaptive to alternate nesting 
sites than most other beach-nesting birds (FWC 2011). 

Snowy Plover nesting areas have been consistently documented on Santa Rosa Island, a 40-mile 
barrier island within Eglin Air Force Base (AFB), located about 50 miles East of Pensacola in 
the Florida Panhandle (Figure 1). Approximately 20 percent of the total Florida Snowy Plover 
population resides on Santa Rosa Island. At Eglin AFB, there were concerns about the effects of 
military training activities (e.g., amphibious landings) and future infrastructure projects (e.g., 
access road armoring, dune and shoreline re-nourishment, and the creation of seawalls and 
bulkheads) on the habitat of the already declining Santa Rosa Island Snowy Plover population.  

One of the most significant causes of Snowy Plover population decline is habitat loss and 
degradation (Brown et al. 2001; Aiello-Lammens et al. 2011; Convertino et al. 2011a). As Snowy 
Plover habitat may be strongly impacted by SLR, any potential restoration and/or conservation 
intervention must address potential SLR impacts. To determine the effect of SLR on shoreline 
habitat, Chu-Agor et al. (2010) used a land-cover model to predict the variation of the coastal 
ecosystem classes —thus, of the Snowy Plover habitat — as a function of projected SLR of 2 m by 
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21001. Moreover, Linkov et al. (2011) studied the changes in the land cover at the Eglin AFB, FL, 
for different SLR projections (0.2, 0.5, 1.0, 1.5, and 2.0 m) at the annual scale from 2010 to 2100. 
These changes in the land cover were calculated as a function of inundation (i.e., reduction in 
elevation due to SLR), erosion, over wash (effects of large storms), saturation (rising water table), 
and accretion/sedimentation. Aiello-Lammens et al. (2011) considered land-cover change over the 
entire state of Florida for three scenarios: no SLR, 1 m SLR, and 2 m SLR. All these predictions 
cover the conventional planning period for ecosystem restoration projects (50 years).  

 

Figure 1. (a) State of Florida with military bases and state/national parks shaded red and green 
respectively; (b) Land-cover map for Eglin Air Force base in Florida, including (c) Santa Rosa 
Island, managed by Eglin AFB. Snowy Plover habitat includes the ocean and estuarine beach 
land cover categories. 

This case-study demonstrates: (1) the impact of each input factor’s uncertainty on the overall 
uncertainty of a land-cover model’s output (the model evaluated the potential impacts of long-term 
SLR on the Snowy Plover population of the Florida Gulf Coast); and (2) the range of model inputs 
that produced a specific output meant to guide environmental management decisions. This was 
done by employing global sensitivity and uncertainty analysis (GSUA) using two generic methods, 
the qualitative screening Morris method and the quantitative variance-based Sobol method coupled 
with Monte Carlo filtering (MCF) (Saltelli et al. 2004; Chu-Agor et al. 2010; Muñoz-Carpena et al. 
2010; Convertino et al. 2011b). The GSUA determines the model output uncertainty based on 
input parameter uncertainty, quantifies the impact of each factor on the outcomes, and — through 

                                                      
1 In this example, only one SLR projection is utilized. EC 1165‐2‐211 provides the requirements for assessing SLR for 
USACE projects and stipulates that — in addition to an extrapolation of the historical rate — an intermediate and a 
high rate, that include future acceleration of SLR shall also be considered. 
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MCF — determines the range of inputs corresponding to the best restoration alternative based on 
the GSUA results. More specifically, GSUA is a sequential method. First the Morris method 
screens the input factors. Next, using the most important input factors, the Sobol method is applied. 
For the Sobol method, only the most important input factors and their associated uncertainties are 
used to determine the outputs of the model. As a final step, the MCF is performed. It’s important to 
note that while commercial packages are available for performing GSUA (e.g., SIMLAB as 
described by Saltelli et al. 2004), emphasis herein is placed on the methods rather than the tools.  

Global Sensitivity and Uncertainty Analysis is a powerful tool that can identify which restoration 
project alternatives should be selected for the model. While it is widely recognized that many 
models have gaps when applied in practice, GSUA does provide clear indications about the 
modality and intensity of the optimal restoration alternative for achieving the most positive 
outcome for the ecosystem, considering all the uncertainties that may arise. Consequently, 
GSUA can assist restoration managers who want to achieve the highest success rate possible, in 
terms of environmental restoration, thus minimizing the probability of project failure.  

Sensitivity and Uncertainty Analysis  

In general, uncertainty analysis (UA) determines the uncertainty in the model output that results 
from the combined uncertainties in the model inputs. Sensitivity analysis (SA), on the other hand, 
determines the individual contribution of uncertainty from each, respective input factor to the total 
uncertainty of a given output. Uncertainties in model inputs are represented by the range of values 
that the input factors can assume due to their natural variability, measurement errors, and climate 
change fluctuations. All possible value combinations for the input factors are synthesized using a 
GSUA method (e.g., the Morris or Sobol method) and the model output is then evaluated using 
these combinations. Following this, the distribution of the output values is produced using the 
MCF method. Thus, this technique allows one to explore all the possible states that the habitat may 
assume under future SLR scenarios. This is extremely important since from the information 
available, restorations have never explored all the possible uncertainties together and all the 
possible scenarios that may result from those uncertainties. In the following, first some of the 
habitat model results are reviewed; then the global sensitivity and uncertainty analysis for the salt 
marsh habitat type is shown; this habitat type correlates to the beach habitat of the Snowy Plover. 

The results of the habitat model, SLAMM (Sea Level Affecting Marshes Model), predict that the 
overall physical Snowy Plover habitat in Eglin AFB would experience minimal losses (not 
exceeding 0.2% of its initial 2010 area) as a result of 2-m SLR from 2010 to 2100.1 SLAMM is a 
land cover model that simulates the dominant processes involved in coastal wetland conversions 
and shoreline modifications during long-term sea level rise. Inundation (i.e., reduction in 
elevation due to sea level rise), erosion, overwash, saturation, and accretion are the primary 
processes included in SLAMM. The model can simulate 23 different wetland categories based on 
the National Wetland Inventory (Clough 2008). Each wetland type requires certain elevation 
boundaries and conditions (e.g., salinity, tidal ranges, etc.) in order to exist. SLAMM divides a 
spatial area into square cells of customized size and carries out the calculations for each cell, 
determining whether the cell is going to remain in the same category, or be converted to another. 

                                                      
1 Note that in this example, a 90-year study period is utilized, whereas the typical planning horizon for ecosystem 
restoration projects is 50 years. 
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Conversion of a cell to another wetland type is generally governed by the minimum elevation of 
that cell. SLAMM is a simple model of land-cover evolution; therefore, other more sophisticated 
models may be used. The initial land-cover map for Eglin AFB is shown in Figure 1. The model 
predicts that the marshes of Santa Rosa Island (SRI), the land-cover category most impacted by 
SLR, could incur a maximum loss of 18% (30 ha) from 2010 to 2030, and beach habitat on SRI 
might incur a 1.7% (24 ha) loss by the end of the century. On the Eglin AFB coast, the regularly 
flooded marsh and the estuarine beach are the most vulnerable land cover categories, suffering 
the most significant losses between 2010 and 2100: 25%, and 11%, respectively. The tidal flat is 
predicted to experience a more dynamic inland migration compared to the rest of the categories 
(Chu-Agor et al. 2010; Linkov et al. 2011). Overall, Eglin AFB is more stable than other regions 
along the Gulf Coast of Florida (e.g., Tyndall AFB), incurring the least change in all land cover 
categories, except the tidal flat, from 2010 to 2100 as a result of 2-m SLR. These predictions 
show how many possible configurations the ecosystem may assume. The potential impacts of 
these habitat changes to the ecosystem and to humans can be assessed for future conservation 
and protection efforts, as shown in the next section.  

A general schematic of the GSUA is shown in Figure 2. The uncertainty analysis demonstrates all 
the possible states of the output of interest, depending on the range in uncertainty of input 
variables. Figure 3 shows the results of the sensitivity analysis. On average, an increase in this salt-
marsh area translates to an increase in the Snowy Plover beach habitat area (Chu-Agor et al. 2010). 
Salt-marsh areas are created by overwash events, and the model predicted a change of this habitat 
into tidal flats and estuarine/ocean beaches. The average elevation of salt-marsh habitats is higher 
than tidal flat habitats and estuarine/ocean beach habitats. In the habitat model, 27 parameters were 
initially considered as model inputs (Table 1). After sensitivity analysis, only 11 parameters 
(elevzone1, elevzone2, risetrend, tidalrange, tidalrangeinl, tiflaero, samaaccre, bramaaccre, 
tifreaccre, sedratebeach, and maxfrethres, in Table 1) were considered important for habitat 
change. For the salt-marsh habitat specifically, the sensitivity analysis further narrowed the inputs 
to two important parameters. Only the salt-marsh accretion and the trend in SLR were found to be 
driving the changes in this habitat type (Figure 3). 

In the Morris analysis — or sensitivity analysis — for each input factor, two sensitivity measures 
can be calculated: (1) the mean elementary effect, , and (2) the standard deviation of the 
elementary effects, . The former estimates the overall effect (i.e., the importance) of the factor 
on a given output while the latter estimates the interactions. The most important parameters are 
those “Morris coordinates’’ for which the mean elementary effect, and the standard deviation of 
the elementary effect () are not close to zero (Chu-Agor et al. 2010; Convertino et al. 2011b). 

Risk Management Considerations 

Performance of the sensitivity and uncertainty analysis results in the ability to identify both the 
important input factors that drive output uncertainty, and the ranges of these input factors that lead 
to each possible outcome (Saltelli et al. 2004). This is determined using MCF, where a set of 
constraints that targets the desired characteristics of the model realization (e.g., an acceptable range 
of outputs, or a threshold value as set by ecosystem managers or stakeholders) has to be defined. 
For the Snowy Plover, a favorable management mode was selected as the one producing a higher  
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Figure 2. Overview of the model (SLAMM) sensitivity and uncertainty analysis. SLAMM inputs (X1, … 
XN) based on data (blue distribution, e.g., marsh erosion, and tidal flat erosion) or based on 
assumptions are considered uncertain and a range of possible values is assigned to each of 
them. The values are run through SLAMM which produces outputs (Y1, … YN) (red distribu-
tions, e.g., salt-marsh area) that may match the observed data or that constitute future 
predictions as a function of climate change. The uncertainty of the inputs produces outputs 
that can assume a range of possible values. The sensitivity analysis (Morris analysis) detects 
the relative impact that each uncertain input has on the model outputs; thus, YN(XN) (pie 
chart) is the part of the output YN produced by the input factor XN.  

 

Figure 3. Sensitivity analysis shows which parameters are driving the outcomes. Here, the salt-marsh 
area is the outcome considered. In this case, salt marsh outcomes (left plot) — either 
favorable or unfavorable — are driven by two parameters, the historic trend of SLR and the 
salt-marsh accretion rate (right plot). The importance of the other parameters in forming the 
salt-marsh area is essentially equal to zero. This result is obtained using the Morris method. 
The accretion rate is the dominating factor with 91% of the outcome influence. Thus, the salt-
marsh accretion is the parameter that restoration managers should focus on. The accretion of 
the salt marsh is, in fact, a parameter that can be directly controlled by coastal restoration 
alternatives such as renourishment.  
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Table 1. Input factors for SLAMM and assumed statistical distribution for the global and 
sensitivity analysis (from Chu-Agor et al. 2010).  

No. Input factors Description Units Value Distributionb

1 elevzone1 DEM vertical error (0-1 m) m 0.2 U(-0.2, 0.2) 

2 elevzone2 DEM vertical error (1-2 m) m 0.2 U(-0.2, 0.2) 

3 elevzone3 DEM vertical error (2-3 m) m 0.2 U(-0.2, 0.2) 

4 elevzone4 DEM vertical error (3-4 m) m 0.2 U(-0.2, 0.2) 

5 elevzone5 DEM vertical error (4-5 m) m 0.2 U(-0.2, 0.2) 

6 wetltype3 Wetland type (Swamp) - 3 D (3, 5, 8) 

7 wetltype5 Wetland type (Inland Fresh Marsh) - 5 D (3, 5, 8) 

8 wetltype8 Wetland type (Salt Marsh) - 8 D (3, 5, 8) 

9 risetrend Historic trend of sea level rise mm/yr 2.10 T(1.5, 2.1,2.4) 

10 tidalrange Tidal range at site (vertical) m 0.35 U(0.35, 0.383) 

11 tidalrangeinl Tidal range inland m 0.35 U(0.35, 0.383) 

12 mhws Mean high water spring m 0.5235 U(0.464, 0.575) 

13 marshero Marsh erosion horiz. m/yr 2.0a U(1.6, 2.4) 

14 swampero Swamp erosion horiz. m/yr 1.0a U(0.8, 1.2) 

15 tiflaero Tidal flat erosion horiz. m/yr 0.2a U(0.16, 0.24) 

16 samaaccre Salt marsh vert. accretion mm/yr 7.0-8.0 T(0.9, 3.2, 8) 

17 bramaaccre Brackish marsh vert. accretion mm/yr 3.0-4.0a U(3,4) 

18 tifreaccre Tidal fresh vert. accretion mm/yr 4.0a U(3.2, 4.8) 

19 sedratebeach Beach/tidal flat Sedimentation rate mm/yr 3.9-8.6 T(0.01, 1.456, 5) 

20 stormfrq Frequency of large storms yr/overwash 2 DU(1,2,3) 

21 maxfethres Max fetch threshold km 9a U(7.2,10.8) 

22 maxwiow Max width of overwash m 500a U(400,600) 

23 owbeoc Overwash beach to ocean m 30a U(24,36) 

24 owdrbe Overwash dryland to beach m 30a U(24,36) 

25 owesbe Overwash estuary to beach m 60a U(48,72) 

26 owmarperlo Overwash marsh percent loss % 50a U(40,60) 

27 owmangperlo Overwash mangrove percent loss % 25a U(20,30) 
a Default values from SLAMM 
b Assumed distributions and their parameters; U= uniform distribution (left boundary, right boundary), D: discrete 
distribution, T: triangular distribution (minimum, peak, maximum) 

final Snowy Plover population than the other simulations, with a lower risk of species extinction 
(“favorable outcome’’ in Figure 3). This favorable outcome for the Snowy Plover is achieved by 
the salt-marsh habitat accretion that is one of the two forecasted outcomes for the coastal 
ecosystem when all the uncertainties are factored in together. The unfavorable outcome 
corresponds to a loss of salt-marsh area that translates into a decrease in abundance of the Snowy 
Plover. 

Based on the results of the uncertainty analysis, MCF is performed for cases where management-
favorable outputs could be defined (e.g., where some outcomes were clearly more desirable than 
others). In this study, the possible restoration alternatives include: (i) no action; (ii) minor salt 
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marsh restoration; or (iii) major salt marsh restoration. Here, “salt marsh restoration’’ means a 
creation of salt-marsh habitat by accretion. The classification into minor and major is determined 
by the range of values for the accretion rate determined by MCF. The higher the accretion 
parameter, the higher the expected salt-marsh increase. Due to the fact that it is very subjective to 
define a priori major and minor restoration, this technical note focuses on the extension of the 
salt marsh habitat, and how it can be achieved considering the drivers of the coastal processes. 
This technical note does not explore in detail, with incremental cost-benefit analysis methods, 
which restoration technology outperforms others. The goal is to quantify the salt marsh accretion 
rate that yields a positive outcome for the Snowy Plover population. 

The output under consideration is the population of a threatened species, and the most favorable 
management decision — or the most “favorable outcome” — is the one giving rise to the largest 
final Snowy Plover population. This technical note predicted above that this corresponds to the 
greatest increase in salt-marsh habitat area; which, in turn, means the greatest increase in Snowy 
Plover habitat (Chu-Agor et al. 2010; Linkov et al. 2011).  

The results of the MCF show that in order to potentially achieve the favorable outcome (an 
increase in the salt-marsh area), the accretion rate of the salt marsh must be in the range of 4 to 
8 mm/year (Figure 4). In the context of the USACE, the optimal restoration of the salt marsh is 
thus expected to be a “major restoration’’ of the salt marsh habitat that would lead to an accretion 
rate between 4 and 8 mm/yr. According to the MCF, the other options “no action” and “minor 
restoration’’ would result in an unfavorable outcome (decrease in salt marsh area) for the Snowy 
Plover.  

 

Figure 4. The MCF technique for assessing the range of values needing to be adopted in order to 
achieve a favorable outcome for the salt-marsh habitat. An accretion rate within the 4-8 mm/yr 
range (right plot) corresponds to a favorable outcome or increase in salt-marsh habitat (left 
plot). Thus, any type of restoration intervention that guarantees such accretion rates is going 
to be successful in terms of environmental benefits that are both an increased salt-marsh area 
and an increase in Snowy Plover abundance.  

CONCLUSIONS: Global sensitivity and uncertainty analysis (GSUA) is a valuable tool that 
can aid project planning in a number of ways. It allows planners to harness uncertainty better by 
providing them with the range of possible outputs associated with an uncertain range of inputs, 
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such as those resulting from SLR. GSUA also narrows restoration planners’ focus by 
determining how much each factor contributes to the possible system outcomes. In this case, 
sensitivity analysis narrowed an initial 22 inputs to two important drivers for salt marsh habitat 
change. Finally, GSUA can guide restoration planning by determining the range of input values 
that will lead to each outcome. Informed by the results of the sensitivity analysis and MCF, 
planners can make decisions that better correspond to the most favorable outcomes. In this case, 
the sensitivity analysis led to the conclusion that the accretion rate is the dominant driver for 
change in habitat class, and the MCF led to the range of accretion rate values that would result in 
a favorable outcome. This information allows managers to focus their efforts on the most 
important factors for Snowy Plover vitality and provides them with a concrete objective (a 4 to 8 
mm/yr accretion rate) that is most likely to lead to project success. Conducting a GSUA 
simplifies and directs projects, thus increasing both the efficiency and the likelihood of success. 
This case study demonstrates how GSUA can be applied to increase the efficiency and likelihood 
of success of ecosystem management projects by properly accounting for uncertainty. 

Global sensitivity and uncertainty analysis allows ecosystem restoration planners to: 

1) consider the uncertainty of the input parameters in order to explore all possible outcomes 
that an ecosystem may assume in the future under changes from external drivers such as 
SLR; 

2) determine which inputs are driving ecosystem change. This can inform management 
decisions by revealing which aspects need to be considered in the restoration of the 
degraded ecosystem; 

3) use modeling to evaluate the magnitude of the interventions required in order to reach the 
desired outcomes. For example, in this case study, a certain range of the salt-marsh 
accretion rate was found to be necessary for a favorable outcome; a higher or lower 
accretion rate may bring the system to an unfavorable outcome leading to Snowy Plover 
population decline or extirpation. Based on this information, the USACE restoration team 
should consider taking action to bring the accretion rate within the target range. 

ADDITIONAL INFORMATION: Research presented in this technical note was developed 
under the Ecosystem Restoration (ER) Research Program. The Technical Director for the ER 
Program is Al Cofrancesco. Technical reviews were provided by John Wright (North Atlantic 
Division, retired), Camie Knollenberg (Rock Island District) and Tim Lewis (ERDC 
Environmental Laboratory). 

For additional information, contact the coauthor, Dr. Burton C. Suedel (601-634-4578, 
Burton.Suedel@usace.army.mil), or the program manager of the Ecosystem Restoration 
Research Program, Glenn Rhett (601-634-3717, Glenn.G.Rhett@usace.army.mil). This technical 
note should be cited as follows: 

Convertino, M., B. C. Suedel, K. M. Baker, J. T. Vogel, L. J. Valverde, J. C. 
Fischenich, and I. Linkov. (2012). An illustrative case study of the application of 
uncertainty concepts and methods for ecosystem restoration. EBA Technical Notes 
Collection. ERDC TN-EMRRP-ER-12-14. Vicksburg, MS: U.S. Army Engineer 
Research and Development Center. http://cw-environment.usace.army.mil/eba/ 
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